Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Infect Control ; 50(8): 844-848, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000226

ABSTRACT

BACKGROUND: Methylene blue (MB) and riboflavin (RB) are light-activated dyes with demonstrated antimicrobial activity. They require no specialized equipment, making them attractive for widespread use. Due to COVID-19-related worldwide shortages of surgical masks, simple, safe, and effective decontamination methods for reusing masks have become desirable in clinical and public settings. MATERIAL AND METHODS: We examined the decontamination of SARS-CoV-2 Beta variant on surgical masks and Revolution-Zero Environmentally Sustainable (RZES) reusable masks using these photoactivated dyes. We pre-treated surgical masks with 2 MB concentrations, 2 RB concentrations, and 2 combinations of MB and RB. We also tested 7 MB concentrations on RZES masks. RESULTS: Photoactivated MB consistently inactivated SARS-CoV-2 at >99.9% for concentrations of 2.6 µM or higher within 30 min on RZES masks and 5 µM or higher within 5 min on disposable surgical masks. RB alone showed a lower, yet still significant inactivation (∼93-99%) in these conditions. DISCUSSION: MB represents a cost-effective, rapid, and widely deployable decontamination method for SARS-CoV-2. The simplicity of MB formulation makes it ideal for mask pre-treatment in low-resource settings. CONCLUSIONS: The results demonstrate that MB effectively decontaminates SARS-CoV-2 at concentrations above 5 µM on surgical masks and above 10 µM on RZES masks.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Coloring Agents/pharmacology , Humans , Masks
2.
J Am Chem Soc ; 143(43): 17891-17909, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1483091

ABSTRACT

The emergence of multi-drug-resistant pathogens threatens the healthcare systems world-wide. Recent advances in phototherapy (PT) approaches mediated by photo-antimicrobials (PAMs) provide new opportunities for the current serious antibiotic resistance. During the PT treatment, reactive oxygen species or heat produced by PAMs would react with the cell membrane, consequently leaking cytoplasm components and effectively eradicating different pathogens like bacteria, fungi, viruses, and even parasites. This Perspective will concentrate on the development of different organic photo-antimicrobials (OPAMs) and their application as practical therapeutic agents into therapy for local infections, wound dressings, and removal of biofilms from medical devices. We also discuss how to design highly efficient OPAMs by modifying the chemical structure or conjugating with a targeting component. Moreover, this Perspective provides a discussion of the general challenges and direction for OPAMs and what further needs to be done. It is hoped that through this overview, OPAMs can prosper and will be more widely used for microbial infections in the future, especially at a time when the global COVID-19 epidemic is getting more serious.


Subject(s)
Anti-Infective Agents/chemistry , Drug Design , Phototherapy/methods , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria/drug effects , Biofilms/drug effects , Biofilms/radiation effects , Coloring Agents/chemistry , Coloring Agents/pharmacology , Equipment and Supplies/microbiology , Equipment and Supplies/virology , Escherichia coli/drug effects , Escherichia coli/physiology , Eye Diseases/drug therapy , Eye Diseases/pathology , Fungi/drug effects , Graphite/chemistry , Light , Nanoparticles/chemistry , Nanoparticles/toxicity , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Quantum Theory , Reactive Oxygen Species/metabolism , Viruses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL